(q^2)-(559.2562q)+34745.2021=0

Simple and best practice solution for (q^2)-(559.2562q)+34745.2021=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (q^2)-(559.2562q)+34745.2021=0 equation:



(q^2)-(559.2562q)+34745.2021=0
We add all the numbers together, and all the variables
q^2-(+559.2562q)+34745.2021=0
We get rid of parentheses
q^2-559.2562q+34745.2021=0
a = 1; b = -559.2562; c = +34745.2021;
Δ = b2-4ac
Δ = -559.25622-4·1·34745.2021
Δ = 173786.688838
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-559.2562)-\sqrt{173786.688838}}{2*1}=\frac{559.2562-\sqrt{173786.688838}}{2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-559.2562)+\sqrt{173786.688838}}{2*1}=\frac{559.2562+\sqrt{173786.688838}}{2} $

See similar equations:

| 3x=45x= | | 0=2x-1.5 | | 4.52x36=162.72 | | 4.52x36= | | 6x+6=—24 | | 6x=2x-(x-9) | | 16-14=6p | | 3x+6=9x–4 | | 6x-11=8x+2 | | x(1.75x)^2=1000 | | (x+5)²=56 | | 3)½(g+1)=6 | | -12+2X=15-3x | | x(15)=15 | | 5t+10=5( | | -2×^2+12x-5=0 | | (4x-3)^2+(4x+3)=26 | | 8w-2=-42 | | 3(1-2x)=3 | | 48x^2-204x+24=0 | | 4x+(1.5x2)=17 | | 4x2+24=104-x2 | | 5/8m+3/8=1/2m+7/8 | | 3/2+3/4a=1/4a-1/2+3/4a | | -2x^2+116=18 | | x2-8x+14=2x-7 | | 1/2x+6=x | | x(3)+4000=24000 | | 3x-x+4/5=14x/5-10 | | 18+2p=14 | | 1800=-30x | | 0.75x-1=0 |

Equations solver categories